Двигатель с неразделенными камерами сгорания, Камера сгорания и тип смесеобразования в двигателе

Двигатель с неразделенными камерами сгорания

Для получения горючей смеси, способной быстро и полностью сгорать, необходимо, чтобы топливо было распылено на возможно более мелкие частицы и чтобы каждая частица имела вокруг себя достаточное для полного сгорания количество воздуха. Заключение договора Оформляем договор поставки с указанием наименования агрегата, стоимости, порядка оплаты, сроков и условий доставки. Двигатель укомплектован масляным, топливным насосом высокого давления распредели-.




Оптимальное усилие сжатия пружины форсунки рекомендуется заводом-изготовителем и регулируется в процессе эксплуатации на стендах. Процессы впрыска топлива в значительной степени определяются также техническим состоянием распылителя: диаметром его отверстий и герметичностью запорной иглы. Увеличение диаметра сопловых отверстий снижает давление впрыска и изменяет строение факела распыливания топлива рис.

Факел содержит сердцевину 1, состоящую из крупных капель и целых струек топлива; среднюю зону 2, состоящую из большого количества крупных капель; внешнюю зону 3, состоящую из мелко распылённых капель. Факел распыливания топлива:. Образование факела и его дальнобойность зависят от давления впрыска, диаметра соплового отверстия, плотности и подвижности воздуха. Чем больше давление впрыска и диаметр соплового отверстия, тем сильнее проникает факел в глубь камеры сгорания. Потоки воздуха в камере сгорания отклоняют факел впрыскиваемого топлива по направлению своего движения.

При эксплуатации форсунок следует учитывать, что засорение или закоксование хотя бы одного отверстия у многосоплового распылителя приводит к нарушению факелов распыливания топлива, а в итоге - к нарушению смесеобразования и процессов сгорания.

Условием нормального протекания рабочего цикла двигателя является умеренная скорость подачи топлива в начале впрыска, чтобы за период задержки воспламенения не накапливалось слишком много топлива в цилиндре.

Тогда нарастание давления при воспламенении происходит плавно и двигатель работает мягко. Основная масса впрыскиваемого топлива должна подаваться с возрастающей скоростью, обеспечивающей лучшее проникновение капель топлива в удаленные точки камеры сгорания с целью полного использования находящегося там воздуха. Впрыск в заключительной стадии должен оканчиваться резко, так как при растянутом окончании топливо будет поступать с меньшей скоростью, и концентрироваться вблизи распылителя.

В этом случае будет наблюдаться неполное сгорание и повышенное дымление. Впрыск характеризуется количеством и скоростью истечения топлива за время цикловой подачи. Такая зависимость может быть изображена графически в виде характеристики впрыска, выбираемой заводом-изготовителем для каждого типа дизельного двигателя.

Развитие процесса сгорания в дизельном двигателе зависит от характеристики впрыска топлива, длительности периода задержки его воспламенения и интенсивности движения воздуха в камере сгорания.

Интервал времени между началом впрыска и воспламенением топлива составляет период задержки воспламенения. Он влияет на характер работы двигателя и зависит главным образом от свойств самого топлива, температуры в камере сгорания и угла опережения впрыска. При стандартном качестве топлива, если температура в камере сгорания возрастает, период задержки воспламенения уменьшается. Это снижает жесткость работы двигателя.

Слишком большое опережение впрыска ведет к увеличению периода задержки воспламенения и жесткой работе двигателя, так как начало впрыска происходит в этом случае при сравнительно низких температурах в цилиндре. Для осуществления действительного цикла в дизелях в воздушный заряд, сжатый в цилиндре до 3 — 7 МПа и нагретый за счёт высокого давления до — 0 С, под высоким давлением до МПа через форсунку впрыскивается топливо.

Двигатель с неразделенными камерами сгорания

Сложные процессы смесеобразования и сгорания осуществляются за очень небольшой промежуток времени, соответствующий 20 — 25 0 поворота коленчатого вала в 10 — 15 раз меньше чем в карбюраторных двигателях.

Рассмотрим индикаторную диаграмму дизельного двигателя рис. Рисунок — Развёрнутая индикаторная диаграмма дизельного двигателя.

Если учесть характер и интенсивность тепловыделения, изменение температуры и давления в цилиндре в разные моменты времени, то весь процесс горения можно условно разделить на четыре фазы:. Впрыск топлива происходит до прихода поршня в ВМТ. Во время впрыска струя топлива, выходящая из форсунки под большим давлением, разбивается о плотные слои воздуха на мельчайшие капли, образуя факел распыления.

Концентрация топлива в таком факеле изменяется по поперечному сечению и длине. В ядре факела находятся наиболее крупные, а на периферии — наиболее мелкие капли, находящиеся друг от друга на значительных расстояниях. Следовательно, структура рабочей смеси в дизелях крайне неоднородна, поэтому здесь коэффициент избытка воздуха обычного смысла лишён, так как он не даёт представления о действительном составе смеси.

Таким образом, период задержки воспламенения включает в себя время, необходимое для распада струй на капли, некоторого продвижения капель по объёму камеры сгорания, прогрева, частичного испарения и смешения топливных паров с воздухом, а также время саморазгона химических реакций. Если период задержки воспламенения больше продолжительности впрыска, то все топливо оказывается поданым в цилиндр до начала воспламенения. При этом большая часть его успевает испариться и смешаться с воздухом.

В результате объёмного воспламенения этой части топлива в цилиндре развивается резкое повышение давления с высокими динамическими нагрузками на детали и повышенным уровнем шума.

Поэтому длительный период задержки воспламенения нежелателен. На продолжительность первой фазы сгорания влияют следующие факторы:. Воспламеняемость топлива, которая оценивается цетановым числом. Чем выше цетановое число, тем лучше воспламеняемость. Давление и температура воздушного заряда в начале впрыска топлива.

При увеличении давления и температуры период задержки воспламенения сокращается. Тип камеры сгорания , который оказывает влияние на задержку воспламенения, так как в зависимости от типа камеры по разному будет проходить распространение топлива по объёму воздушного заряда и в пристеночной зоне.

Кроме того температура стенок камеры сгорания также будет зависеть от ее типа. Интенсивность направленного движения заряда в камере. Тип распылителя форсунки.

Форсунка закрытого типа сокращает период задержки воспламенения. Нагрузка на двигатель. С ростом нагрузки увеличивается давление и температура цикла, что приводит к повышению теплового режима двигателя, а это в свою очередь вызывает сокращение времени задержки воспламенения. Частота вращения коленчатого вала. Продолжительность первой фазы горения при этом растет. В первую очередь сгорают однородные слои смеси топлива и воздуха хорошо перемешанные между собой. При этом пламя распространяется очень быстро, соответственно быстро растёт Давление, в определённых случаях с образованием ударной волны, распространяющейся со скоростью звука.

Но в отличие от карбюраторных двигателей в дизелях эти волны не переходят в детонационные, так как структура смеси по всему объёму камеры сгорания неравномерна. Это позволяет получать более высокую степень сжатия. После того, как сгорит хорошо подготовленная к воспламенению топливовоздушная смесь, горение продолжается в зонах, где структура смеси более неравномерна. Здесь на индикаторной диаграмме наблюдается некоторый спад роста давления.

Температура рабочего тела возрастает до — К. Максимальное давление может достичь 6—9 МПа, а при наддуве превысить 10 МПа. На развитие и продолжительность второй фазы влияют следующие факторы:. Количество топлива, прошедшего предпламенную подготовку за период задержки воспламенения и сгорающее с большой скоростью.

Чем больше подача топлива и мельче распыление, тем интенсивнее тепловыделение и рост давления. Тип камеры сгорания. Влияние конструкции камеры на первую фазу горения приводит к определённому развитию и второй фазы, так как определяет количество топливовоздушной смеси, подготовленной к воспламенению в течение первой фазы. С уменьшением нагрузки продолжительность второй фазы горения сокращается, так как уменьшается величина впрыскиваемой порции топлива и время его подачи.

При росте частоты вращения коленчатого вала улучшается качество распыления, сокращается продолжительность впрыска, растёт давление и температура заряда. Все это приводит к сокращению второй фазы горения. Началом этой фазы считается конец второй фазы точка 3 , а окончанием — момент, соответствующий достижению максимальной средней температуры газов в цилиндре точка 4. К началу третьей фазы все несгоревшее топливо, поданное в цилиндр во время первых двух фаз, находится в виде капель или сгустков паров, которые отделены от зон со свободным кислородом фронтом пламени или продуктами горения.

В отдельную группу выделяются тяжёлые двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединённому с поршнем штоком скалкой.

Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД В последнее время для повышения мощности крейцкопфных двигателей более характерно применение наддува, а не двойное действие, так как тепловой режим поршня при этом менее напряжённый.

Однако, подпоршневые полости всё же применяют для организации продувки. Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для реверсирования двигателя нужно изменять фазы открытия клапанов и впрыска топлива. Обычно реверсивные двигатели снабжаются распределительными валами с двойным набором кулачков — для переднего и заднего хода; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, после чего распредвалы перемещают в положение хода нужного направления.

Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала направление вращения распределительного вала сохраняется. Двухтактные двигатели с контурной продувкой, при которой газораспределение осуществляется поршнем, в специальных реверсивных устройствах не нуждаются однако в них всё же требуется корректировка момента впрыска топлива.

Камера сгорания ДВС

Реверсивные двигатели также применялись на ранних тепловозах с механической передачей. Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жёстких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжёлые топлива, такие как мазут.

Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряжённость вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизельных двигателей в авиации только некоторые бомбардировщики Junkers , а также советские тяжёлые бомбардировщики Пе-8 и Ер-2 , оснащавшиеся авиационными двигателями АЧ и М конструкции А.

Чаромского и Т. На максимальных эксплуатационных режимах топливо не догорает, приводя к выбросу облаков сажи , и подачу топлива на больших оборотах приходится уменьшать механический или электронный корректор подачи. Зато при низких оборотах дизельный двигатель может работать без дымления при большей цикловой подаче топлива. Потому он выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем.

По этой причине, а особенно ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями [15]. Например, в России в году почти все грузовики и автобусы были оснащены дизельными двигателями окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизельные планировалось завершить к году , а также планируется перевод легковых автомобилей на дизельные двигатели [11].

Теория ДВС: Камера сгорания и детонация Часть 1 (Основы)

Это является преимуществом также и в двигателях морских судов , так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя , а более высокий теоретический КПД см. Цикл Карно даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода СО , но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно.

Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды НС или СН , оксиды окислы азота NO х [16] и сажа или её производные в форме чёрного дыма. Больше всего загрязняют атмосферу в России двигатели грузовиков и автобусов , которые часто являются старыми и неотрегулированными. Это связано с тем, что в дизельном двигателе степень сжатия воздуха можно доводить до больших величин по сравнению со степенью сжатия горючей смеси в бензиновых двигателях.

Таким образом, с отработанными газами в дизельном двигателе уходит меньше тепла. Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее то есть, сравнительно плохо испаряется и в замкнутом моторном отделении не образует большого количества легковоспламеняющихся паров — таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется искровая система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого их применения на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за не являющихся редкостью утечек топлива.

По сравнению с танками с бензиновым мотором ниже и вероятность возгорания танка с дизельным двигателем при его поражении в боевых условиях, хотя это вовсе не означает полной устойчивости к пожару — более того, детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта [18] , в частности, у танков Т она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса [18].

С другой стороны, дизельный двигатель уступает карбюраторному в удельной мощности, а потому в ряде случаев высокая мощность при малом объёме моторного отделения более выигрышным может быть использование именно карбюраторного силового агрегата хотя это характерно для слишком уж лёгких боевых единиц.

Ввиду большей степени сжатия дизельный двигатель при пуске требует проворота коленвала с большим усилием, чем карбюраторный двигатель сходного литража. Поэтому для его пуска необходимо использовать стартер большей мощности. В то же время потребление чистого воздуха позволяет осуществить пуск подачей в цилиндры сжатого воздуха, что в ряде случаев даёт существенные преимущества перед пуском электростартером — нечувствительность системы к понижению внешней температуры, нетребовательность к материалам, в частности, система пуска сжатым воздухом вообще не имеет деталей из меди, не содержит опасных для здоровья технического персонала веществ, то есть едких щелочей и крепких кислот, а также ядовитых свинца, кадмия, дорогого серебра; она легче системы пуска с электростартером.

Явными недостатками дизельных двигателей являются помутнение и застывание запарафинивание летнего дизельного топлива при низких температурах. Также они крайне чувствительны к загрязнению топлива механическими частицами и водой, топливная аппаратура дороже и существенно сложнее в ремонте, так как и форсунки [19] , и ТНВД являются прецизионными устройствами.

Ремонт дизельных двигателей вообще значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизельные моторы обладают более ровным и высоким крутящим моментом в своём рабочем диапазоне.

Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением системы Common rail. В данном типе впрыск топлива осуществляется электронно-управляемыми форсунками.

Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизельный мотор ничем не уступает своему бензиновому собрату, а по ряду параметров сложности и значительно его превосходит.

Так, например, если давление топлива в форсунках обычного двигателя с механическим впрыском составляет от до бар приблизительно эквивалентно «атмосфер» , то в новейших системах Common rail оно находится в диапазоне от до бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизельных двигателей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого сажевого фильтра DPF - фильтр твёрдых частиц.

Сажевый фильтр представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остаётся в сажевом фильтре, поэтому программа блока управления периодически переводит двигатель в режим очистки сажевого фильтра путём так называемой постинжекции, то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи.

Стандартом де-факто в конструкциях транспортных дизельных моторов стало наличие наддува, а в последние годы — и интеркулера — устройства, охлаждающего воздух после сжатия турбиной — чтобы после охлаждения получить большую массу воздуха кислорода в камере сгорания при том же давлении после турбины. Турбокомпрессор реже — приводной нагнетатель позволяет поднять удельные мощностные характеристики массовых дизельных моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, из-за более высоких давлений в цилиндрах на циклах сжатия и расширения, аналогичные детали должны быть прочнее аналогичных деталей карбюраторных двигателей и, следовательно, тяжелее. Хон на поверхности зеркала цилиндра более грубый, а твёрдость зеркал цилиндров выше.

Головки поршней специально разрабатываются под особенности процессов сгорания и рассчитаны на повышенную степень сжатия. При прямом непосредственном впрыске головки поршней обычно содержат в себе камеру сгорания. Средние и тяжёлые двигатели, как правило, имеют поршни с принудительным масляным охлаждением Д, K6SDR. На современных двигателях все чаще используется система питания Common rail , позволяющая уменьшить потребление топлива и выбросы вредных веществ, а также снизить нагрузки на детали за счёт гибкого управления процессом впрыска на всех режимах работы двигателя.

Дизельные двигатели применяются для привода стационарных силовых установок — дизель-генераторных электростанций , на рельсовых тепловозы , дизелевозы , дизель-поезда , автодрезины и безрельсовых легковые автомобили , автобусы , грузовики транспортных средствах, самоходных машинах и механизмах тракторы , комбайны , асфальтовые катки , скреперы и т.

Двигатель с неразделенными камерами сгорания

Двигатели семейства М — компактные высокооборотистые цилиндровые звездообразные дизель-редукторные агрегаты для скоростных судов. Серийно выпускаются на заводе «Звезда» в Санкт-Петербурге. При этом двигатель в сборе с реверс-редуктором имеет длину всего 4,5 м, а его высота составляет всего 1,6 м. Примечательно, что в данном семействе присутствует спаренный агрегат М, который можно рассматривать как цилиндровый двигатель.

Материал из Википедии — свободной энциклопедии. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 10 января года; проверки требуют 2 правки. У этого термина существуют и другие значения, см. Дизель значения. Основная статья: Четырёхтактный двигатель.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения должны быть пояснения. Возможно, эта статья содержит оригинальное исследование. Проверьте соответствие информации приведённым источникам и удалите или исправьте информацию, являющуюся оригинальным исследованием.

В случае необходимости подтвердите информацию авторитетными источниками. В противном случае статья может быть выставлена на удаление.

Двигатели внутреннего сгорания поршневые. Серия: Инженерные исследования. Архивировано 5 декабря года. Дата обращения: 8 декабря Архивировано 1 июня года. Тимошевский, д-р техн. Наливайко, канд. Архивировано 21 января года. Дата обращения: 8 апреля Архивировано 29 октября года. Дизелизация российского авторынка. Пять лет на дизелизацию. Архивировано 13 ноября года. Дата обращения: 23 августа Архивировано 23 августа года.

Двигатель с неразделенными камерами сгорания

Дата обращения: 12 октября Архивировано 14 октября года. Дата обращения: 4 мая Архивировано 10 ноября года. Дата обращения: 3 июня Архивировано 3 июня года. Химия нефти и топлив: учебное пособие.

Дата обращения: 5 июля Архивировано 21 апреля года. Форсунки применяемые в дизельных двигателях рус. Дата обращения: 11 января Архивировано 11 января года. Ссылки на внешние ресурсы. Большая датская Большая каталанская Большая китайская Большая норвежская Большая норвежская Большая российская научно-образовательный портал Брокгауза и Ефрона Britannica онлайн Treccani Universalis.

Как работает двигатель внутреннего сгорания автомобиля?

В библиографических каталогах. Двигатели внутреннего сгорания кроме турбинных. Двухтактный двигатель двигатель Ленуара Четырёхтактный двигатель Пятитактный двигатель роторный Шеститактный двигатель.